西门子 6ES7195-7HD10-0XA0 长沙玥励自动化设备有限公司
长沙玥励自动化设备有限公司 2018-5-29

西门子 6ES7195-7HD10-0XA0   西门子 6ES7195-7HD10-0XA0   西门子 6ES7195-7HD10-0XA0  






SIMATIC DP,总线模块,针对 ET 200M 用于安装 2 个 IM153-2 Red. 针对插拔功能 运行期间


玥励自动化设备有限公司西门子系统集成商长期销售西门子S7-200/300/400/1200PLC、数控系统、变频器、人机界面、触摸屏、伺服、电机、西门子电缆等,并可提供西门子维修服务,欢迎来电垂询 

联系人:姚善雷 (销售经理)

手机    13874941405

QQ       3464463681

地址:长沙市岳麓区雷锋大道468号金科世界城16-3303室


产品
商品编号(市售编号) 6ES7195-7HD10-0XA0
产品说明 SIMATIC DP,总线模块,针对 ET 200M 用于安装 2 个 IM153-2 Red. 针对插拔功能 运行期间
产品家族 IM 153-1/153-2
产品生命周期 (PLM) PM300:有效产品
价格数据
价格组 / 总部价格组 AL / 250
列表价(不含增值税) 显示价格
您的单价(不含增值税) 显示价格
金属系数
交付信息
出口管制规定 AL : N / ECCN : N
工厂生产时间 1 天
净重 (Kg) 0.128 Kg
产品尺寸 (W x L X H) 未提供
包装尺寸 10.30 x 10.30 x 6.90
包装尺寸单位的测量 CM
数量单位 1 件
包装数量 1
其他产品信息
EAN 4025515068723
UPC 662643225280
商品代码 85389091
LKZ_FDB/ CatalogID ST76
产品组 4056
原产国 德国
Compliance with the substance restrictions according to RoHS directive RoHS 合规开始日期: 2014.03.04
产品类别 A: 问题无关,即刻重复使用
电气和电子设备使用后的收回义务类别 没有电气和电子设备使用后回收的义务
分类
 
版本 分类
eClass 5.1 27-24-26-03
eClass 6 27-24-26-03
eClass 7.1 27-24-26-03
eClass 8 27-24-26-03
eClass 9 27-24-26-03
eClass 9.1 27-24-26-03
ETIM 4 EC001598
ETIM 5 EC001598
ETIM 6 EC001598
IDEA 4 3560
UNSPSC 14 32-15-17-03
UNSPSC 15 32-15-17-04

.液压伺服系统简介
液压伺服系统以其响应速度快(相对于机械系统)、负载刚度大、控制功率大等独特的优点在工业控制中得到了广泛的应用。而电液伺服系统是通过使用电液伺服阀,将小功率的电信号转换为大功率的液压动力,从而实现了一些重型机械设备的伺服控制。

1.1 液压伺服系统的组成
液压伺服系统主要由以下几部分组成(如图 1):

  • 储油缸
  • 油泵
  • 比例换向阀
  • 液压缸
  • 测量反馈系统
  • 控制系统


图1. 液压伺服系统

使用TCPU控制液压伺服系统时,TCPU就是该系统中的控制器;TCPU可以通过脉冲或者模拟量输出来控制比例换向阀的开度和方向从而控制液压缸的运动方向和速度;测量反馈系统可以由设备编码器或者模拟量信号通过IM174接口模板或模拟量输入模板将信号反馈给TCPU。

1.2 液压伺服系统与电气伺服系统区别
控制电气伺服系统时,执行机构(通常为伺服电机)能够根据速度给定改变运行速度,响应快,动态特性好,给定与输出之间呈线性比例关系;而液压伺服系统由其液压油的物理特性决定了其响应速度和动态特性都较低,而且在液压伺服系统启动、停止以及换向时都会出现大滞后性,这样就导致输出给定与执行速度之间的关系并不是线形的(如图 2),这样,一旦我们还以控制线性电气轴的模型来控制非线性液压轴时,速度会非常不稳定,而且位置闭环会不停的修正由速度不稳定所带来的位置偏差,这时液压执行机构就会来回跳动或者抖动,造成定位误差大甚至损坏机械设备。所以我们在控制液压伺服系统时就应该先了解该系统的给定与输出之间的关系,确定补偿曲线来保证执行机构平稳运行。


图 2. 给定与实际速度的关系

在 TCPU 中,补偿曲线可以由多种方法来确定,例如 S7T Config 中的 Trace 工具,根据输出不同的给定值和实际的速度值来确定差补点,将差补点的值以表格的方式添入到 Cam Disk (凸轮盘)中。
本文主要介绍使用自动获得补偿曲线功能块 FB 520“GetCharacteristics” 和 FB 521“WriteCamData”来确定差补曲线。


2.系统结构及软硬件要求

2.1 系统结构
本系统的给定和反馈均使用高性能ET200M带AI/AO模板来实现(如图 3):


图 3. 系统结构图

2.2 硬件及软件要求

名称 数量 订货号
CPU 315T-2 DP 1 6ES7315-6TG10-0AB0  Or 6ES7315-6TH13-0AB
Firmware: V2.6
Or CPU 317T-2 DP 1 6ES7317-6TJ10-0AB0  Or 6ES7317-6TK13-0AB0
Firmware: V2.6
Micro Memory Card 4MB 1 6ES7953-8LM20-0AA0
Interface module IM174 1 6ES7174-0AA00-0AA0
Or ET200M / ET200S 1 6ES7 153-2BA02-0XB0 or 6ES7 151-1BA02-0AB0
STEP 7 1 6ES7810-4CC08-0YA7 Version: V5.4 以上
S7 Technology 1 6ES7864-1CC41-0YX0 Version: V4.1 以上

表 1. 硬件及软件要求


3.项目配置过程:

3.1 硬件组态
在 SIMATIC 管理器中创建新的项目并添加一个 SIMATIC 300 站点。根据实际硬件配置硬件组态,本例中使用模拟量输入输出作为给定和反馈信号。组态模拟量输入输出并分配 I/O 地址(图 4);


图 4. 硬件组态

3.2 在 S7T Config 中配置液压轴
在 S7T Config 的浏览器中,双击“插入轴”(Insert axis)(图 5)


图 5. 插入液压轴

在“常规”(General) 选项卡中,选择“速度控制”(Speed control) 和“定位”(Positioning) 控制然后打开轴向导;
在轴类型话框中,选择“液压”(Hydraulic) 轴类型。 将阀类型定义为“Q 阀”(Q valve)(图 6)。


图 6. 选择轴的类型

配置完液压轴的物理单位及模度后,进入到输入输出的配置界面,并选择其输出方式模拟量输出模板(图7 );


图 7. 选择输出方式

选择输出设备为模拟量输出模块,填入相应参数:

  • Output:模拟量输出地址
  • Format:ET200M/ET200S选择Left-justified
  • Resolution:模拟量模板的输出精度(不含符号位)

点击继续进入到位置反馈参数界面,填入使用的模拟量输入的地址(图 8):


图 8. 选择反馈方式

点击继续,进入到位置反馈参数分配界面(图 9):


图 9. 反馈参数分配

相关输入参数:

  • Factor/Offset:输入系数及偏置
  • Usable bits: 模拟量模板的输入精度(不含符号位)
  • Minimum value:输入的最小值
  • Maximum value:输入的最大值

分配完所有参数,单击“完成”(Finish) 退出轴组态对话框。

3.3 建立补偿曲线凸轮盘
根据前文所提到的,液压伺服系统需要确定一条补偿曲线来线性化输出变量与液压轴速度之间的关系。在 TCPU 中通过使用凸轮盘(Cam Disk)工艺对象来确定补偿曲线,液压伺服轴的补偿曲线反映了液压比例阀输出给定与液压轴速度之间的对应关系。由于本文使用功能块 FB 520 “GetCharacteristics” 和 FB 521“WriteCamData” 来自动获得补偿曲线,所以需要建立两个凸轮盘(Cam Disk)来确定补偿曲线。其中第一个凸轮盘是用来测量、寻找补偿点,而测量后的结果会写入到另外一个凸轮盘,这个被写入的凸轮盘也就是当前液压伺服系统的最终补偿曲线。
在 CAMS 下面建立两个凸轮盘,分别取名为:Cam_Profile 与 Cam_Reference,并填入两个差补点描绘一条输出给定与执行速度间的参考关系曲线,如图 10:


图 10. 建立补偿曲线凸轮盘

做好以上工作后,将 S7T-Config 存盘编译,并将组态好的轴和凸轮盘等工艺对象生成相应的工艺对象数据块,并下载到 TCPU。本例中工艺对象数据块对应为:

  • Axis:DB3;
  • Cam_Reference: DB4;
  • Cam_Profile: DB5;


4.编写用户程序

4.1 使用 FB 520 和 FB 521 自动获得补偿曲线
FB 520 “GetCharacteristics” 和 FB 521“WriteCamData”两个功能块并没有在 S7-Tech 库中提供,所以需要到以下链接下载例子项目,并将项目中的FB520和FB521复制到自己的项目中来。
下载链接:27731588

4.2 FB 520 和 FB 521 的功能介绍

4.2.1 FB 520 “GetCharacteristics”
通过该功能块,系统能够执行测量并得到当前液压系统的补偿曲线,并将相应的Cam Disk激活为当前液压系统的Profile。其内部调用结构如图 11:


图 11. FB 520 结构

4.2.2 FB 521 “WriteCamData”
该功能块能够将测量的补偿曲线写入到相应的Cam Disk中。其内部调用结构如图 12:


图 12. FB 521 结构

由这两个功能块的结构图可以看出,其内部调用了很多S7-Tech里面的功能块,所以需要将这些功能块复制到当前的项目中来。而且,可以看到在FB520功能块内部已经调用了FB521,所以只要保证FB 521在项目中存在就可以了,不需要在程序中单独调用。表 2 为FB520,FB521所使用到的S7-Tech功能块:

PLC-Open FB 功能
FB 402 “MC_Reset” 复位可能出现的错误
FB 405 “MC_Halt” 停止轴运动
FB 407 “MC_WriteParameter” 写系统参数
FB 414 “MC_MoveVelocity” 使轴运动,并可改变其运行速度
FB 434 “MC_CamClear” 删除一个凸轮盘中的所有插补点
FB 435 “MC_CamSectorAdd” 插入一个新的插补点到凸轮盘中
FB 436 “MC_CamInterpolate” 修改凸轮盘的插补点
FB 439 “MC_SetCharacteristics” 激活一个凸轮曲线作为液压阀的特性曲线

表 2. 使用的 S7-Tech 功能块

4.2.3 FB520的管脚及其定义(图 13 及表 3):


图 13. FB 520 管脚定义

名称 含义
输入参数
Axis 液压轴工艺DB
CamReference 执行测试时的参考凸轮盘的工艺DB
CamProfil 最终要写入的凸轮盘的工艺DB
Enable 使能
Mode 执行模式
maxDistance 执行测试时的最大移动距离
JogPos 正向点动
JogNeg 负向点动
JogVelocity 点动速度
输出参数
Done 测量完成
Busy
Error 有错误
ErrorID 错误代码
ErrorSource 错误源
State 当前状态
ActiveCam 当前执行的凸轮盘的工艺DB

表 3. FB 520 管脚定义

4.3 在OB1中调用FB520(图 14)


图 14. 在 OB1 中调用 FB 520

使用步骤:

  • 将工艺对象的 DB 号填入到相应的管脚上;
  • 通过点动(Jog)管脚,将液压轴移动到要运行的最初始位置;
  • 在 maxDistance 管脚上填入要执行测量的最大行程,这里建议填入的行程距离要大于正常运行时的工作行程,但注意不要超过液压缸的最大行程;
  • 准备工作就绪后,将使能位(Enable)置 1,这时液压缸会启动检测过程,可以通过状态字(State)观察当前的执行情况。
  • 当测量结束后,完成位(Done)置 1,表示测量工作已经完成,而且测量出来的补偿曲线已经写入到 Cam_Profile 凸轮盘中。

4.4 FB 520 “GetCharacteristics” 的测量原理(图 15)

  • TCPU 通过模拟量输出将给定发送给液压阀,并激活其动作;
  • 液压阀开启后,相应流量的液压油注入到液压缸并推动液压轴运动;
  • 液压轴的移动速度由位置反馈系统检测并存储在 TCPU 内;


图 15. FB 520 的测量原理

4.5 FB 520 “GetCharacteristics” 补偿曲线的写入过程(图 16):

  • 当所有位置上的测量值记录完成后会以凸轮盘的形式存在 TCPU 中;
  • 凸轮盘的坐标分别对应的是阀的给定开度和液压轴的当前速度;
  • 最后 TCPU 会执行 FB439 MC_SetCharacteristic 将当前凸轮盘激活为液压轴的补偿曲线。


图 16. 补偿曲线的写入过程

4.6 FB 520 “GetCharacteristics” 执行时的基本步骤

  • 初始化 FB 520:
    生成的线性参考凸轮盘被激活,并且液压轴被设置为闭环模式;
  • 检测液压轴的死区:
    根据 TCPU 发出的目标给定以及液压轴的响应时间计算出死区;
  • 由正方向开始测量补偿曲线:
    由正方向开始,TCPU 在不同的位置上给出一系列给定速度,并根据反馈速度测量补偿点,测量结束后回到初始位置;
  • 由负方向开始测量补偿曲线:
    由负方向开始,TCPU 在不同的位置上给出一系列给定速度,并根据反馈速度测量偿点,测量结束后回到初始位置;
  • 写入并激活测量出的补偿曲线:
    TCPU 将测量的补偿曲线写入到另外一个凸轮盘,并将其激活为当前液压轴的最终偿曲线。

4.7 FB 520 “GetCharacteristics” 的 42 种执行状态(图 17):

  • 0-41:初始化
  • 42-44:死区检测
  • 45-47:移动到初始位置
  • 50-101:正向检测
  • 110-111:移动到正向最大位置
  • 120-171:反向测量
  • 180-181:移动到初始位置
  • 190-210:写入并激活补偿曲线


图 17:FB 520 的42种执行状态(State)


5.执行结果
在FB520执行自动检测之后,可以通过在线的方式察看测量出来的补偿曲线,如图 18:

GSD文件介绍
GSD文件是一种设备描述文件,一般以“*.GSD”或“*.GSE”为后缀。它描述了设备的功能参数,用来将不同厂家支持PROFIBUS产品集成在一起。另外在工程开发中有时候由于开发人员不同,要用两个独立的STEP 7项目来实现同一个PROFIBUS 网络通讯,此时需要借助GSD文件的方法来实现。


2 GSD文件的导入方法
下面以CPU314C-2DP为例,说明一下 GSD 文件的导入步骤:
首先从西门子网站上下载相关产品的 GSD 文件,下面是SIMATIC系列产品的GSD文件下载链接:113652
选择相关产品并下载到本地硬盘中。


图 1 GSD文件下载界面

打开SIMATIC Manager,进入硬件组态界面,选择菜单栏的“Options”->“Install GSD File…”,如图 2 所示。


图 2 安装GSD文件

进入GSD安装界面后,选择“Browse…”,选择相关GSD文件的保存文件夹,选择对应的GSD文件(这里选择语言为英文的“*.GSE”文件),点击“Install”按钮进行安装。


图 3 选择安装GSD文件

安装完成后可以在下面的路径中找到CPU314C-2DP,如图 4:


图 4 硬件目录中的保存路径


3 CP342-5做主站采用GSD方法实现PROFIBUS DP 通信

3.1网络拓扑介绍
PROFIBUS DP主站由CPU314+CP342-5组成,其中CP342-5做主站。
PROFIBUS DP 从站由CPU314C-2DP组成,集成的DP接口做从站。
网络拓扑图如下:


图 5 网络拓扑图

3.2 从站组态
首先插入SIMATIC S7-300站,添加CPU314-2DP,双击DP接口,分配一个PROFIBUS地址,然后在“Operating Mode”中选择“DP salve”模式,进入“Configuration”标签页,新建两行通信接口区,如图 6所示:


图 6 从站通信接口区

注意:上述从站组态的通信接口区和主站导入的GSD从站的通信接口区在顺序、长度和一致性上要保持一致。

3.3 主站组态及编程

3.3.1主站组态
首先插入SIMATIC S7-300站,添加CPU314以及CP342-5,然后双击CP342-5,将“Operating Mode”设置为“DP Master”。新建一条PROFIBUS网络。然后从硬件目录中选择CPU314C-2DP GSD文件(路径参照图4),添加到新建的PROFIBUS网络中,为其分配PROFIBUS地址,该地址要与前文的从站地址一致。
然后组态CPU314C-2DP从站对应的通信接口区。本文在硬件目录中CPU314C-2DP GSD文件下方选择了“Master_I Slave_Q 1B unit”和“Master_Q Slave_I 1B unit”,和从站组态时通信接口区保持一致,如图 7所示。


图 7 主站组态

3.3.2 主站编程
由于CP342-5提供的是虚拟地址映射区,所以需要分别调用FC1(DP_SEND)和FC2(DP_RECV)来实现数据访问。如图8 和图9所示。


图 8发送程序

 


图 9接收程序

如图7所示,主站侧在组态CPU314C-2DP GSD从站时,第一行通信接口区选择了“Master_I Slave_Q 1B unit”,“Master_I”对应主站的IB0。参照图6可知“Slave_Q”对应从站的QB0, 表示数据由从站的QB0发送到主站的IB0。又由于CP342-5通过调用FC2,将IB0读取的数据保存在MB11,所以数据由从站的QB0经过主站的IB0,最终保存在MB11。 同理可分析第二行通信接口区“Master_Q Slave_I 1B unit”。综上所述,主站和从站通信接口的对应关系,如表 1:

主站 传输方向 从站
MB11IB0      QB0
MB10QB0      IB0

表1 主站和从站通信接口区对应表


4 S7-300做主站采用GSD方法实现PROFIBUS DP 通信

4.1 网络拓扑介绍
PROFIBUS DP主站由CPU314C-2DP组成,集成的DP接口做主站。
PROFIBUS DP 从站由CPU314C-2DP组成,集成的DP接口做从站。
网络拓扑图如下:


图 10 网络拓扑图

4.2 从站组态
组态步骤同3.2节,这里不再赘述。

4.3 主站组态
首先新建S7-300站,添加CPU314C-2DP,双击DP接口,新建一条PROFIBUS网络。然后从硬件目录中选择CPU314C-2DP GSD文件(路径参照图4),添加到新建的PROFIBUS网络中,为其分配PROFIBUS地址,该地址要与前文的从站地址一致。
然后为CPU314C-2DP从站组态的通信接口区。本文在硬件目录中CPU314C-2DP GSD文件下方选择了“Master_I Slave_Q 1B unit”和“Master_Q Slave_I 1B unit”,必须和从站组态时通信接口区保持一致。如图 11所示。


图 11 主站组态

主站和从站通信接口区的对应关系如表 2 所示:

主站 传输方向 从站
IB0         QB0
QB0          IB0

表 2 主站和从站通信接口区对应表

注:文档涉及到西门子产品如下:

表 3 产品列表

产品名称 订货号 版本号
STEP 7(英文版) 6ES7 810 - 4CC08 - 0YA5 V5.4 SP5
CPU314C-2DP 6ES7 314 - 6CG03 - 0AB0 V2.6
CPU314 6ES7 314 - 1AG13 - 0AB0 V2.6
CP342-5 6GK7 342 - 5DA02 - 0XE0 V5.2
PS307 6ES7 307 - 1EA00 - 0AA0  


 西门子 6ES7195-7HD10-0XA0   西门子 6ES7195-7HD10-0XA0  西门子 6ES7195-7HD10-0XA0 

阅读:61
来源:长沙玥励自动化设备有限公司
联系人:姚善雷
联系方式:13874941405