西门子 6AG1153-2BA10-2XY0 长沙玥励自动化设备有限公司
长沙玥励自动化设备有限公司 2018-5-29

西门子 6AG1153-2BA10-2XY0   西门子 6AG1153-2BA10-2XY0   西门子 6AG1153-2BA10-2XY0  





SIPLUS ET 200M IM153-2 (*BA02)T1 RAIL -25 ... +55°C T1,70°C,10 min 带防腐蚀涂层 基于:6ES7153-2BA10-0XB0 。 接通 ET 200M IM 153-2 高性能型 针对最多 12 个 S7-300 模块 具有冗余能力, 时间戳 适合用于节拍同步 运行 新特性: 直至最多 12 个模块可使用 从站主动发起针对 Drive ES(驱动工程软件)


玥励自动化设备有限公司西门子系统集成商长期销售西门子S7-200/300/400/1200PLC、数控系统、变频器、人机界面、触摸屏、伺服、电机、西门子电缆等,并可提供西门子维修服务,欢迎来电垂询 

联系人:姚善雷 (销售经理)

手机    13874941405

QQ       3464463681

地址:长沙市岳麓区雷锋大道468号金科世界城16-3303室

产品
商品编号(市售编号) 6AG1153-2BA10-2XY0
产品说明 SIPLUS ET 200M IM153-2 (*BA02)T1 RAIL -25 ... +55°C T1,70°C,10 min 带防腐蚀涂层 基于:6ES7153-2BA10-0XB0 。 接通 ET 200M IM 153-2 高性能型 针对最多 12 个 S7-300 模块 具有冗余能力, 时间戳 适合用于节拍同步 运行 新特性: 直至最多 12 个模块可使用 从站主动发起针对 Drive ES(驱动工程软件)
产品家族 SIPLUS IM 153-1/153-2 接口模块
产品生命周期 (PLM) PM300:有效产品
价格数据
价格组 / 总部价格组 CT / 473
列表价(不含增值税) 显示价格
您的单价(不含增值税) 显示价格
金属系数
交付信息
出口管制规定 AL : N / ECCN : N
工厂生产时间 22 天
净重 (Kg) 0.284 Kg
产品尺寸 (W x L X H) 未提供
包装尺寸 12.80 x 15.10 x 5.10
包装尺寸单位的测量 CM
数量单位 1 件
包装数量 1
其他产品信息
EAN 4047618068325
UPC 804766281259
商品代码 85176200
LKZ_FDB/ CatalogID A&DSE/SIP ADD
产品组 4646
原产国 德国
Compliance with the substance restrictions according to RoHS directive RoHS 合规开始日期: 2015.11.17
产品类别 C: 产品制造/生产到订单,无法重复使用或再利用,也不能通过信用退货。
电气和电子设备使用后的收回义务类别 没有电气和电子设备使用后回收的义务
分类
 
版本 分类
eClass 5.1 27-24-26-08
eClass 6 27-24-26-08
eClass 7.1 27-24-26-08
eClass 8 27-24-26-08
eClass 9 27-24-26-08
eClass 9.1 27-24-26-08
ETIM 5 EC001604
ETIM 6 EC001604
IDEA 4 3564
UNSPSC 15 32-15-17-05

.液压伺服系统简介
液压伺服系统以其响应速度快(相对于机械系统)、负载刚度大、控制功率大等独特的优点在工业控制中得到了广泛的应用。而电液伺服系统是通过使用电液伺服阀,将小功率的电信号转换为大功率的液压动力,从而实现了一些重型机械设备的伺服控制。

1.1 液压伺服系统的组成
液压伺服系统主要由以下几部分组成(如图 1):

  • 储油缸
  • 油泵
  • 比例换向阀
  • 液压缸
  • 测量反馈系统
  • 控制系统


图1. 液压伺服系统

使用TCPU控制液压伺服系统时,TCPU就是该系统中的控制器;TCPU可以通过脉冲或者模拟量输出来控制比例换向阀的开度和方向从而控制液压缸的运动方向和速度;测量反馈系统可以由设备编码器或者模拟量信号通过IM174接口模板或模拟量输入模板将信号反馈给TCPU。

1.2 液压伺服系统与电气伺服系统区别
控制电气伺服系统时,执行机构(通常为伺服电机)能够根据速度给定改变运行速度,响应快,动态特性好,给定与输出之间呈线性比例关系;而液压伺服系统由其液压油的物理特性决定了其响应速度和动态特性都较低,而且在液压伺服系统启动、停止以及换向时都会出现大滞后性,这样就导致输出给定与执行速度之间的关系并不是线形的(如图 2),这样,一旦我们还以控制线性电气轴的模型来控制非线性液压轴时,速度会非常不稳定,而且位置闭环会不停的修正由速度不稳定所带来的位置偏差,这时液压执行机构就会来回跳动或者抖动,造成定位误差大甚至损坏机械设备。所以我们在控制液压伺服系统时就应该先了解该系统的给定与输出之间的关系,确定补偿曲线来保证执行机构平稳运行。


图 2. 给定与实际速度的关系

在 TCPU 中,补偿曲线可以由多种方法来确定,例如 S7T Config 中的 Trace 工具,根据输出不同的给定值和实际的速度值来确定差补点,将差补点的值以表格的方式添入到 Cam Disk (凸轮盘)中。
本文主要介绍使用自动获得补偿曲线功能块 FB 520“GetCharacteristics” 和 FB 521“WriteCamData”来确定差补曲线。


2.系统结构及软硬件要求

2.1 系统结构
本系统的给定和反馈均使用高性能ET200M带AI/AO模板来实现(如图 3):


图 3. 系统结构图

2.2 硬件及软件要求

名称 数量 订货号
CPU 315T-2 DP 1 6ES7315-6TG10-0AB0  Or 6ES7315-6TH13-0AB
Firmware: V2.6
Or CPU 317T-2 DP 1 6ES7317-6TJ10-0AB0  Or 6ES7317-6TK13-0AB0
Firmware: V2.6
Micro Memory Card 4MB 1 6ES7953-8LM20-0AA0
Interface module IM174 1 6ES7174-0AA00-0AA0
Or ET200M / ET200S 1 6ES7 153-2BA02-0XB0 or 6ES7 151-1BA02-0AB0
STEP 7 1 6ES7810-4CC08-0YA7 Version: V5.4 以上
S7 Technology 1 6ES7864-1CC41-0YX0 Version: V4.1 以上

表 1. 硬件及软件要求


3.项目配置过程:

3.1 硬件组态
在 SIMATIC 管理器中创建新的项目并添加一个 SIMATIC 300 站点。根据实际硬件配置硬件组态,本例中使用模拟量输入输出作为给定和反馈信号。组态模拟量输入输出并分配 I/O 地址(图 4);


图 4. 硬件组态

3.2 在 S7T Config 中配置液压轴
在 S7T Config 的浏览器中,双击“插入轴”(Insert axis)(图 5)


图 5. 插入液压轴

在“常规”(General) 选项卡中,选择“速度控制”(Speed control) 和“定位”(Positioning) 控制然后打开轴向导;
在轴类型话框中,选择“液压”(Hydraulic) 轴类型。 将阀类型定义为“Q 阀”(Q valve)(图 6)。


图 6. 选择轴的类型

配置完液压轴的物理单位及模度后,进入到输入输出的配置界面,并选择其输出方式模拟量输出模板(图7 );


图 7. 选择输出方式

选择输出设备为模拟量输出模块,填入相应参数:

  • Output:模拟量输出地址
  • Format:ET200M/ET200S选择Left-justified
  • Resolution:模拟量模板的输出精度(不含符号位)

点击继续进入到位置反馈参数界面,填入使用的模拟量输入的地址(图 8):


图 8. 选择反馈方式

点击继续,进入到位置反馈参数分配界面(图 9):


图 9. 反馈参数分配

相关输入参数:

  • Factor/Offset:输入系数及偏置
  • Usable bits: 模拟量模板的输入精度(不含符号位)
  • Minimum value:输入的最小值
  • Maximum value:输入的最大值

分配完所有参数,单击“完成”(Finish) 退出轴组态对话框。

3.3 建立补偿曲线凸轮盘
根据前文所提到的,液压伺服系统需要确定一条补偿曲线来线性化输出变量与液压轴速度之间的关系。在 TCPU 中通过使用凸轮盘(Cam Disk)工艺对象来确定补偿曲线,液压伺服轴的补偿曲线反映了液压比例阀输出给定与液压轴速度之间的对应关系。由于本文使用功能块 FB 520 “GetCharacteristics” 和 FB 521“WriteCamData” 来自动获得补偿曲线,所以需要建立两个凸轮盘(Cam Disk)来确定补偿曲线。其中第一个凸轮盘是用来测量、寻找补偿点,而测量后的结果会写入到另外一个凸轮盘,这个被写入的凸轮盘也就是当前液压伺服系统的最终补偿曲线。
在 CAMS 下面建立两个凸轮盘,分别取名为:Cam_Profile 与 Cam_Reference,并填入两个差补点描绘一条输出给定与执行速度间的参考关系曲线,如图 10:


图 10. 建立补偿曲线凸轮盘

做好以上工作后,将 S7T-Config 存盘编译,并将组态好的轴和凸轮盘等工艺对象生成相应的工艺对象数据块,并下载到 TCPU。本例中工艺对象数据块对应为:

  • Axis:DB3;
  • Cam_Reference: DB4;
  • Cam_Profile: DB5;


4.编写用户程序

4.1 使用 FB 520 和 FB 521 自动获得补偿曲线
FB 520 “GetCharacteristics” 和 FB 521“WriteCamData”两个功能块并没有在 S7-Tech 库中提供,所以需要到以下链接下载例子项目,并将项目中的FB520和FB521复制到自己的项目中来。
下载链接:27731588

4.2 FB 520 和 FB 521 的功能介绍

4.2.1 FB 520 “GetCharacteristics”
通过该功能块,系统能够执行测量并得到当前液压系统的补偿曲线,并将相应的Cam Disk激活为当前液压系统的Profile。其内部调用结构如图 11:


图 11. FB 520 结构

4.2.2 FB 521 “WriteCamData”
该功能块能够将测量的补偿曲线写入到相应的Cam Disk中。其内部调用结构如图 12:


图 12. FB 521 结构

由这两个功能块的结构图可以看出,其内部调用了很多S7-Tech里面的功能块,所以需要将这些功能块复制到当前的项目中来。而且,可以看到在FB520功能块内部已经调用了FB521,所以只要保证FB 521在项目中存在就可以了,不需要在程序中单独调用。表 2 为FB520,FB521所使用到的S7-Tech功能块:

PLC-Open FB 功能
FB 402 “MC_Reset” 复位可能出现的错误
FB 405 “MC_Halt” 停止轴运动
FB 407 “MC_WriteParameter” 写系统参数
FB 414 “MC_MoveVelocity” 使轴运动,并可改变其运行速度
FB 434 “MC_CamClear” 删除一个凸轮盘中的所有插补点
FB 435 “MC_CamSectorAdd” 插入一个新的插补点到凸轮盘中
FB 436 “MC_CamInterpolate” 修改凸轮盘的插补点
FB 439 “MC_SetCharacteristics” 激活一个凸轮曲线作为液压阀的特性曲线

表 2. 使用的 S7-Tech 功能块

4.2.3 FB520的管脚及其定义(图 13 及表 3):


图 13. FB 520 管脚定义

名称 含义
输入参数
Axis 液压轴工艺DB
CamReference 执行测试时的参考凸轮盘的工艺DB
CamProfil 最终要写入的凸轮盘的工艺DB
Enable 使能
Mode 执行模式
maxDistance 执行测试时的最大移动距离
JogPos 正向点动
JogNeg 负向点动
JogVelocity 点动速度
输出参数
Done 测量完成
Busy
Error 有错误
ErrorID 错误代码
ErrorSource 错误源
State 当前状态
ActiveCam 当前执行的凸轮盘的工艺DB

表 3. FB 520 管脚定义

4.3 在OB1中调用FB520(图 14)


图 14. 在 OB1 中调用 FB 520

使用步骤:

  • 将工艺对象的 DB 号填入到相应的管脚上;
  • 通过点动(Jog)管脚,将液压轴移动到要运行的最初始位置;
  • 在 maxDistance 管脚上填入要执行测量的最大行程,这里建议填入的行程距离要大于正常运行时的工作行程,但注意不要超过液压缸的最大行程;
  • 准备工作就绪后,将使能位(Enable)置 1,这时液压缸会启动检测过程,可以通过状态字(State)观察当前的执行情况。
  • 当测量结束后,完成位(Done)置 1,表示测量工作已经完成,而且测量出来的补偿曲线已经写入到 Cam_Profile 凸轮盘中。

4.4 FB 520 “GetCharacteristics” 的测量原理(图 15)

  • TCPU 通过模拟量输出将给定发送给液压阀,并激活其动作;
  • 液压阀开启后,相应流量的液压油注入到液压缸并推动液压轴运动;
  • 液压轴的移动速度由位置反馈系统检测并存储在 TCPU 内;


图 15. FB 520 的测量原理

4.5 FB 520 “GetCharacteristics” 补偿曲线的写入过程(图 16):

  • 当所有位置上的测量值记录完成后会以凸轮盘的形式存在 TCPU 中;
  • 凸轮盘的坐标分别对应的是阀的给定开度和液压轴的当前速度;
  • 最后 TCPU 会执行 FB439 MC_SetCharacteristic 将当前凸轮盘激活为液压轴的补偿曲线。


图 16. 补偿曲线的写入过程

4.6 FB 520 “GetCharacteristics” 执行时的基本步骤

  • 初始化 FB 520:
    生成的线性参考凸轮盘被激活,并且液压轴被设置为闭环模式;
  • 检测液压轴的死区:
    根据 TCPU 发出的目标给定以及液压轴的响应时间计算出死区;
  • 由正方向开始测量补偿曲线:
    由正方向开始,TCPU 在不同的位置上给出一系列给定速度,并根据反馈速度测量补偿点,测量结束后回到初始位置;
  • 由负方向开始测量补偿曲线:
    由负方向开始,TCPU 在不同的位置上给出一系列给定速度,并根据反馈速度测量偿点,测量结束后回到初始位置;
  • 写入并激活测量出的补偿曲线:
    TCPU 将测量的补偿曲线写入到另外一个凸轮盘,并将其激活为当前液压轴的最终偿曲线。

4.7 FB 520 “GetCharacteristics” 的 42 种执行状态(图 17):

  • 0-41:初始化
  • 42-44:死区检测
  • 45-47:移动到初始位置
  • 50-101:正向检测
  • 110-111:移动到正向最大位置
  • 120-171:反向测量
  • 180-181:移动到初始位置
  • 190-210:写入并激活补偿曲线


图 17:FB 520 的42种执行状态(State)


5.执行结果
在FB520执行自动检测之后,可以通过在线的方式察看测量出来的补偿曲线,如图 18:

1. IO-Link 基本功能介绍

IO-Link 是PROFIBUS 和PROFINET组织推出的一种新的传感器/执行器层面的协议。其定位与传统接线和AS-i协议之间的部分。其采用点对点的连接方式。其具有非常强的优势,例如其与传统接线方式比较能够大量的节省布线的工作量和成本,与AS-i比较而言其能获得更多的信息,以及易于移植等。IO-Link具有master 和device的结构形式,master具有一个或多个port能够连接device。4SI IO-Link具有4个port能够连接4个device。


2. 4 SI IO-Link使用步骤

2.1 实验设备

PS307 电源                                 6ES7 307-1BA00-0AA0                  1
CPU                                            6ES7 315-2AG10-0AB0               1
ET200S                                       6ES7 151-1AA05-0AB0               1
4SI IO-Link                                  6ES7138-4GA50-0AB0               1
IO-Link Module K20 4DI             3RK5010-0BA10-0AA0              1
传感器                                                                                              1
STEP7 V5.4 SP5(PCT)

2.2 硬件接线

2.2.1 4SI IO-Link硬件接线
4SI IO-Link必须在ET200S上使用(6ES7 151-1BA02-0AB0,6ES7 151-1AA05-0AB0,6ES7 151-7AA20-0AB0)并配合相应的终端模块。

图1为4SI IO-Link电子模块的端子分配图,图2为终端模块的接线示意图.


图1. 4SI IO-Link模块端子分配

 


图2.可用终端模块及接线图

2.2.2 IO-Link Module K20 4DI硬件接线
如图所示该模块需要使用M12的接头进行连接,对于M12接头的选择而言首先要考虑接头的编码方式,其次需要了解其为插针还是插座,如果需要选择带预装电缆则要考虑连接电缆的数量。


图3. IO-Link Module K20 4DI接线图

如图所示,通过PCT我们能够知道IO-Link Module K20 4DI 连接传感器M12接口的类型(插座)


图4. IO-Link Module K20 4DI M12插头的类型

 


图5. IO-Link Module K20 4DI M12插头的管脚定义

因5号管脚未使用,所以对照下图我们能够确定我们可以选择下列编码类型的M12连接器插头(插针)


图6.M12接头编码示意图

下图为M12接头的参考订货号。


图7.M12插头参考订货号

如选用了预装配电缆请参照下图定义:


图8.M12插头预装配电缆的颜色及功能定义

对于IO-Link 连接的M12接头的管脚定义如下图所示:


图9.IO-Link M12接头的管脚定义

对应的M12连接头在4SI IO-LINK手册中已给出了参考型号:


图10.IO-Link M12接头参考型号

2.3 硬件组态

2.3.1 站的配置
(1)在SIMATIC Manager 中创建一个项目,并 组态一个300站及ET200S从站。如图所示:


图11.配置300站

(2)配置ET200S站(插入4SI IO-Link)


图12:配置ET200S

2.3.2 通过PCT设置IO-Link参数
(1)鼠标左键选中4SI IO-Link,通过右键菜单打开PCT:


图13:打开PCT

(2)如图可通过拖拽的方式配置device:


图14:配置IO-Link device

(3)如图点击Addresses菜单打开地址配置界面:


图14:PCT参数化界面-Addresses

勾选 Show absolute addresses,则可看到端口对应与主站的绝对地址


图15:PCT参数化界面-Addresses

勾选 Port Qualifier,则主站会为每个端口分配一个bit,用于反映通讯状况。


图16:PCT参数化界面-Addresses

勾选 Structure of Process Data下的All Port ,则能够看到各端口IO与master地址的对应关系。


图17:PCT参数化界面-Addresses

(3)通过PCT 下载参数设置:
如果已经连接了device 可通过如下按钮下载参数配置


图18:PCT参数化界面-下载

可通过如下按钮单独下载master或device的参数配置


图19:PCT参数化界面-下载

(4)保存PCT参数设置:


图20:保存PCT参数设置

(5)保存硬件组态


图21:保存硬件组态

2.4 程序调用及编写
对于INPUT/OUTPUT而言可以通过直接的IO访问的方式进行读取


图22:数字量输入读取

其中M0.0-M0.3对应与IO-Link Module K20 4DI的IN1-IN4的输入值,M1.0则表示master 的prot1的值是否正确。



西门子 6AG1153-2BA10-2XY0  西门子 6AG1153-2BA10-2XY0  西门子 6AG1153-2BA10-2XY0

阅读:69
来源:长沙玥励自动化设备有限公司
联系人:姚善雷
联系方式:13874941405