西门子 6ES7195-7HA00-0XA0 长沙玥励自动化设备有限公司
长沙玥励自动化设备有限公司 2018-5-29

西门子  6ES7195-7HA00-0XA0   西门子  6ES7195-7HA00-0XA0   西门子  6ES7195-7HA00-0XA0  




SIMATIC DP,总线模块,用于 ET200M 用于安装一个 SV 和一个 IM153,用于牵拉和 插接功能,在 Run 运行过程中 包括总线模块盖板



玥励自动化设备有限公司西门子系统集成商长期销售西门子S7-200/300/400/1200PLC、数控系统、变频器、人机界面、触摸屏、伺服、电机、西门子电缆等,并可提供西门子维修服务,欢迎来电垂询 

联系人:姚善雷 (销售经理)

手机    13874941405

QQ       3464463681

地址:长沙市岳麓区雷锋大道468号金科世界城16-3303室



产品
商品编号(市售编号) 6ES7195-7HA00-0XA0
产品说明 SIMATIC DP,总线模块,用于 ET200M 用于安装一个 SV 和一个 IM153,用于牵拉和 插接功能,在 Run 运行过程中 包括总线模块盖板
产品家族 IM 153-1/153-2
产品生命周期 (PLM) PM300:有效产品
价格数据
价格组 / 总部价格组 AL / 250
列表价(不含增值税) 显示价格
您的单价(不含增值税) 显示价格
金属系数
交付信息
出口管制规定 AL : N / ECCN : N
工厂生产时间 1 天
净重 (Kg) 0.103 Kg
产品尺寸 (W x L X H) 未提供
包装尺寸 10.30 x 10.30 x 6.90
包装尺寸单位的测量 CM
数量单位 1 件
包装数量 1
其他产品信息
EAN 4025515060192
UPC 662643115321
商品代码 85389091
LKZ_FDB/ CatalogID ST76
产品组 4056
原产国 德国
Compliance with the substance restrictions according to RoHS directive RoHS 合规开始日期: 2008.12.31
产品类别 A: 问题无关,即刻重复使用
电气和电子设备使用后的收回义务类别 没有电气和电子设备使用后回收的义务
分类
 
版本 分类
eClass 5.1 27-24-26-03
eClass 6 27-24-26-03
eClass 7.1 27-24-26-03
eClass 8 27-24-26-03
eClass 9 27-24-26-03
eClass 9.1 27-24-26-03
ETIM 4 EC001598
ETIM 5 EC001598
ETIM 6 EC001598
IDEA 4 3560
UNSPSC 14 32-15-17-03
UNSPSC 15 32-15-17-04

.液压伺服系统简介
液压伺服系统以其响应速度快(相对于机械系统)、负载刚度大、控制功率大等独特的优点在工业控制中得到了广泛的应用。而电液伺服系统是通过使用电液伺服阀,将小功率的电信号转换为大功率的液压动力,从而实现了一些重型机械设备的伺服控制。

1.1 液压伺服系统的组成
液压伺服系统主要由以下几部分组成(如图 1):

  • 储油缸
  • 油泵
  • 比例换向阀
  • 液压缸
  • 测量反馈系统
  • 控制系统


图1. 液压伺服系统

使用TCPU控制液压伺服系统时,TCPU就是该系统中的控制器;TCPU可以通过脉冲或者模拟量输出来控制比例换向阀的开度和方向从而控制液压缸的运动方向和速度;测量反馈系统可以由设备编码器或者模拟量信号通过IM174接口模板或模拟量输入模板将信号反馈给TCPU。

1.2 液压伺服系统与电气伺服系统区别
控制电气伺服系统时,执行机构(通常为伺服电机)能够根据速度给定改变运行速度,响应快,动态特性好,给定与输出之间呈线性比例关系;而液压伺服系统由其液压油的物理特性决定了其响应速度和动态特性都较低,而且在液压伺服系统启动、停止以及换向时都会出现大滞后性,这样就导致输出给定与执行速度之间的关系并不是线形的(如图 2),这样,一旦我们还以控制线性电气轴的模型来控制非线性液压轴时,速度会非常不稳定,而且位置闭环会不停的修正由速度不稳定所带来的位置偏差,这时液压执行机构就会来回跳动或者抖动,造成定位误差大甚至损坏机械设备。所以我们在控制液压伺服系统时就应该先了解该系统的给定与输出之间的关系,确定补偿曲线来保证执行机构平稳运行。


图 2. 给定与实际速度的关系

在 TCPU 中,补偿曲线可以由多种方法来确定,例如 S7T Config 中的 Trace 工具,根据输出不同的给定值和实际的速度值来确定差补点,将差补点的值以表格的方式添入到 Cam Disk (凸轮盘)中。
本文主要介绍使用自动获得补偿曲线功能块 FB 520“GetCharacteristics” 和 FB 521“WriteCamData”来确定差补曲线。


2.系统结构及软硬件要求

2.1 系统结构
本系统的给定和反馈均使用高性能ET200M带AI/AO模板来实现(如图 3):


图 3. 系统结构图

2.2 硬件及软件要求

名称 数量 订货号
CPU 315T-2 DP 1 6ES7315-6TG10-0AB0  Or 6ES7315-6TH13-0AB
Firmware: V2.6
Or CPU 317T-2 DP 1 6ES7317-6TJ10-0AB0  Or 6ES7317-6TK13-0AB0
Firmware: V2.6
Micro Memory Card 4MB 1 6ES7953-8LM20-0AA0
Interface module IM174 1 6ES7174-0AA00-0AA0
Or ET200M / ET200S 1 6ES7 153-2BA02-0XB0 or 6ES7 151-1BA02-0AB0
STEP 7 1 6ES7810-4CC08-0YA7 Version: V5.4 以上
S7 Technology 1 6ES7864-1CC41-0YX0 Version: V4.1 以上

表 1. 硬件及软件要求


3.项目配置过程:

3.1 硬件组态
在 SIMATIC 管理器中创建新的项目并添加一个 SIMATIC 300 站点。根据实际硬件配置硬件组态,本例中使用模拟量输入输出作为给定和反馈信号。组态模拟量输入输出并分配 I/O 地址(图 4);


图 4. 硬件组态

3.2 在 S7T Config 中配置液压轴
在 S7T Config 的浏览器中,双击“插入轴”(Insert axis)(图 5)


图 5. 插入液压轴

在“常规”(General) 选项卡中,选择“速度控制”(Speed control) 和“定位”(Positioning) 控制然后打开轴向导;
在轴类型话框中,选择“液压”(Hydraulic) 轴类型。 将阀类型定义为“Q 阀”(Q valve)(图 6)。


图 6. 选择轴的类型

配置完液压轴的物理单位及模度后,进入到输入输出的配置界面,并选择其输出方式模拟量输出模板(图7 );


图 7. 选择输出方式

选择输出设备为模拟量输出模块,填入相应参数:

  • Output:模拟量输出地址
  • Format:ET200M/ET200S选择Left-justified
  • Resolution:模拟量模板的输出精度(不含符号位)

点击继续进入到位置反馈参数界面,填入使用的模拟量输入的地址(图 8):


图 8. 选择反馈方式

点击继续,进入到位置反馈参数分配界面(图 9):


图 9. 反馈参数分配

相关输入参数:

  • Factor/Offset:输入系数及偏置
  • Usable bits: 模拟量模板的输入精度(不含符号位)
  • Minimum value:输入的最小值
  • Maximum value:输入的最大值

分配完所有参数,单击“完成”(Finish) 退出轴组态对话框。

3.3 建立补偿曲线凸轮盘
根据前文所提到的,液压伺服系统需要确定一条补偿曲线来线性化输出变量与液压轴速度之间的关系。在 TCPU 中通过使用凸轮盘(Cam Disk)工艺对象来确定补偿曲线,液压伺服轴的补偿曲线反映了液压比例阀输出给定与液压轴速度之间的对应关系。由于本文使用功能块 FB 520 “GetCharacteristics” 和 FB 521“WriteCamData” 来自动获得补偿曲线,所以需要建立两个凸轮盘(Cam Disk)来确定补偿曲线。其中第一个凸轮盘是用来测量、寻找补偿点,而测量后的结果会写入到另外一个凸轮盘,这个被写入的凸轮盘也就是当前液压伺服系统的最终补偿曲线。
在 CAMS 下面建立两个凸轮盘,分别取名为:Cam_Profile 与 Cam_Reference,并填入两个差补点描绘一条输出给定与执行速度间的参考关系曲线,如图 10:


图 10. 建立补偿曲线凸轮盘

做好以上工作后,将 S7T-Config 存盘编译,并将组态好的轴和凸轮盘等工艺对象生成相应的工艺对象数据块,并下载到 TCPU。本例中工艺对象数据块对应为:

  • Axis:DB3;
  • Cam_Reference: DB4;
  • Cam_Profile: DB5;


4.编写用户程序

4.1 使用 FB 520 和 FB 521 自动获得补偿曲线
FB 520 “GetCharacteristics” 和 FB 521“WriteCamData”两个功能块并没有在 S7-Tech 库中提供,所以需要到以下链接下载例子项目,并将项目中的FB520和FB521复制到自己的项目中来。
下载链接:27731588

4.2 FB 520 和 FB 521 的功能介绍

4.2.1 FB 520 “GetCharacteristics”
通过该功能块,系统能够执行测量并得到当前液压系统的补偿曲线,并将相应的Cam Disk激活为当前液压系统的Profile。其内部调用结构如图 11:


图 11. FB 520 结构

4.2.2 FB 521 “WriteCamData”
该功能块能够将测量的补偿曲线写入到相应的Cam Disk中。其内部调用结构如图 12:


图 12. FB 521 结构

由这两个功能块的结构图可以看出,其内部调用了很多S7-Tech里面的功能块,所以需要将这些功能块复制到当前的项目中来。而且,可以看到在FB520功能块内部已经调用了FB521,所以只要保证FB 521在项目中存在就可以了,不需要在程序中单独调用。表 2 为FB520,FB521所使用到的S7-Tech功能块:

PLC-Open FB 功能
FB 402 “MC_Reset” 复位可能出现的错误
FB 405 “MC_Halt” 停止轴运动
FB 407 “MC_WriteParameter” 写系统参数
FB 414 “MC_MoveVelocity” 使轴运动,并可改变其运行速度
FB 434 “MC_CamClear” 删除一个凸轮盘中的所有插补点
FB 435 “MC_CamSectorAdd” 插入一个新的插补点到凸轮盘中
FB 436 “MC_CamInterpolate” 修改凸轮盘的插补点
FB 439 “MC_SetCharacteristics” 激活一个凸轮曲线作为液压阀的特性曲线

表 2. 使用的 S7-Tech 功能块

4.2.3 FB520的管脚及其定义(图 13 及表 3):


图 13. FB 520 管脚定义

名称 含义
输入参数
Axis 液压轴工艺DB
CamReference 执行测试时的参考凸轮盘的工艺DB
CamProfil 最终要写入的凸轮盘的工艺DB
Enable 使能
Mode 执行模式
maxDistance 执行测试时的最大移动距离
JogPos 正向点动
JogNeg 负向点动
JogVelocity 点动速度
输出参数
Done 测量完成
Busy
Error 有错误
ErrorID 错误代码
ErrorSource 错误源
State 当前状态
ActiveCam 当前执行的凸轮盘的工艺DB

表 3. FB 520 管脚定义

4.3 在OB1中调用FB520(图 14)


图 14. 在 OB1 中调用 FB 520

使用步骤:

  • 将工艺对象的 DB 号填入到相应的管脚上;
  • 通过点动(Jog)管脚,将液压轴移动到要运行的最初始位置;
  • 在 maxDistance 管脚上填入要执行测量的最大行程,这里建议填入的行程距离要大于正常运行时的工作行程,但注意不要超过液压缸的最大行程;
  • 准备工作就绪后,将使能位(Enable)置 1,这时液压缸会启动检测过程,可以通过状态字(State)观察当前的执行情况。
  • 当测量结束后,完成位(Done)置 1,表示测量工作已经完成,而且测量出来的补偿曲线已经写入到 Cam_Profile 凸轮盘中。

4.4 FB 520 “GetCharacteristics” 的测量原理(图 15)

  • TCPU 通过模拟量输出将给定发送给液压阀,并激活其动作;
  • 液压阀开启后,相应流量的液压油注入到液压缸并推动液压轴运动;
  • 液压轴的移动速度由位置反馈系统检测并存储在 TCPU 内;


图 15. FB 520 的测量原理

4.5 FB 520 “GetCharacteristics” 补偿曲线的写入过程(图 16):

  • 当所有位置上的测量值记录完成后会以凸轮盘的形式存在 TCPU 中;
  • 凸轮盘的坐标分别对应的是阀的给定开度和液压轴的当前速度;
  • 最后 TCPU 会执行 FB439 MC_SetCharacteristic 将当前凸轮盘激活为液压轴的补偿曲线。


图 16. 补偿曲线的写入过程

4.6 FB 520 “GetCharacteristics” 执行时的基本步骤

  • 初始化 FB 520:
    生成的线性参考凸轮盘被激活,并且液压轴被设置为闭环模式;
  • 检测液压轴的死区:
    根据 TCPU 发出的目标给定以及液压轴的响应时间计算出死区;
  • 由正方向开始测量补偿曲线:
    由正方向开始,TCPU 在不同的位置上给出一系列给定速度,并根据反馈速度测量补偿点,测量结束后回到初始位置;
  • 由负方向开始测量补偿曲线:
    由负方向开始,TCPU 在不同的位置上给出一系列给定速度,并根据反馈速度测量偿点,测量结束后回到初始位置;
  • 写入并激活测量出的补偿曲线:
    TCPU 将测量的补偿曲线写入到另外一个凸轮盘,并将其激活为当前液压轴的最终偿曲线。

4.7 FB 520 “GetCharacteristics” 的 42 种执行状态(图 17):

  • 0-41:初始化
  • 42-44:死区检测
  • 45-47:移动到初始位置
  • 50-101:正向检测
  • 110-111:移动到正向最大位置
  • 120-171:反向测量
  • 180-181:移动到初始位置
  • 190-210:写入并激活补偿曲线


图 17:FB 520 的42种执行状态(State)


5.执行结果
在FB520执行自动检测之后,可以通过在线的方式察看测量出来的补偿曲线,如图 18:

1. 概述
ET200S 功能模块主要包括四种类型:模块1Count24V/100kHz, 1Count5V/500kHz, 1SSI 和 2 PULSE。本文主要针对初次使用 2 PULSE 功能模块的用户,介绍 2 PULSE 两路脉冲输出功能模块的功能、配置及简单编程。但是本文无法取代 ET200S 功能模块手册《ET 200S Technological Functions》。建议用户通过此文档掌握该模块的初步调试和使用方法后,仔细阅读模块手册《ET 200S Technological Functions》,进一步加深对ET200S 功能模块的理解。


2. 模板介绍


图 1 2 PULSE 模块外形

模板订货号:6ES7 138-4DD00-0AB0
模板功能:该模块可以产生脉冲信号对被控对象进行控制。
工作模式:脉冲输出模式;脉宽调制(PWM)模式;脉冲串模式;On/Off延时模式。
模板主要属性:输出脉冲个数:2;输出脉冲电压:24V;输出脉冲最大频率:2.5kHz


3. 模板接线图


图 2 接线端子

含义:
Channel 0: 端子1 到 4
Channel 1: 端子5 到 8
24 VDC:传感器电源
M:公共端
DI:输入信号
DO:输出信号


4. 硬件配置
2 PULSE 功能模板基本可以和任意ET200S 接口模块一起使用,本文中以 IM151-3PN 接口模块为例。

主要软、硬件列表:

名称 订货号 数量
CPU 315-2 PN/DP 6ES7 315-2EH13-0AB0 1
IM151-3 PN 接口模块 6ES7 151-3BA20-0AB0 1
PM-E 电源管理模块 6ES7 138-4CA01-0AA0 1
2 PULSE 脉冲数出模块 6ES7 138-4DD00-0AB0 1
1 Count 24V/100kHz 6ES7 138-4DA04-0AB0 1
STEP7 V5.4 SP5 6ES7 810-4CC08-0YA7 1
1 Count 24V/100kHz 6ES7 138-4DA04-0AB0 1

表 1 软硬件配置

 


图 3 系统配置图


5. 硬件组态及参数配置
按照图 3 通过网线连接 CPU315-2PN/DP 与 IM151-3PN 的PN 接口并将 ET200S 站的I/O 模板和功能模板安装好,正确连接电源线和信号线。
打开 STEP7,在管理器中新建一个项目,插入相应的 S7-300 站,进入硬件配置界面,配置 PN I/O 和其他相关模块(图 4)。由于本文主要介绍 ET200S 2 PULSE 模块,其他配置过程不在详细描述,如有关于 PN I/O 配置的问题请参阅相关手册和说明,参考链接:26707214


图 4 硬件组态

ET200S 2 PULSE 模块参数配置界面:


图 5 2 PULSE 模块参数界面

其中参数含义:
1. 组诊断;
2. CPU/主站停机时输出的状态:可以选择继续工作、使用替代值等模式;
3. 通道编号 0;
4. DO 诊断:可以诊断输出断线、短路等;
5. 替代值:配合参数 2 使用;
6. 运行模式:更改 2 PULSE 输出模式,包括脉冲输出,脉宽调制(PWM),脉冲串,On/Off 延时等模式;
7. PWM(脉宽调制)的输出模式:可以使用千分数或者S7 模拟量格式的值;
8. 时基:后面所有跟时间相关的参数都以该参数为时间单位;
9. DI 数字量输入的功能:可作为普通输入和硬件使能使用;
10. 接通延时;
11. 最小/脉冲时间;
12. 周期时间;
13. 通道编号 1;
将项目配置好后,存盘编译并下载,参数配置随即生效。


6. 编程
该模板跟很多其他的 ET200S 功能模板类似,都是通过外部 I/O 直接对模板进行控制和反馈。ET200S 2 PULSE 模块输入/输出分配详见表 2,表 3:
控制信号(输出):


表 2 输出地址分配

反馈信号(输入)


表 3 输入地址分配

为了便于对该模板地址中的位、字节、字等地址的读写,我们根据模板的硬件地址将需要的输入/输出地址通过程序映射到一个接口 DB 块中,以后的操作都针对该 DB 块中相应的地址进行读写即可(见图 6):


图 6 项目程序


7. 模式说明及举例

7.1.脉冲输出模式:
脉冲输出模式可以使 2 PULSE 模块在输出使能后通过一定时间的延迟后输出一个给定脉冲宽度的脉冲输出。时序请参见图 7:


图 7 脉冲输出时序图

脉冲数出参数配置:


图 8 脉冲数出参数配置

在 2 PULSE 模块参数界面,选择运行模式为 pulse output,时基为 1ms,DI 输入功能为普通输入,所以在运行的时候输出将不参考硬件使能的状态。启动延时设为 1000ms。
通过图 7 可以看出脉冲输出模式需要在程序里面给定给两个主要的数值:脉冲时间和接通延时时间,其中:
脉冲时间 = 给定数值 * 参数设定的时基
接通延时 = 延时系数 * 0.1 * 参数设定的启动延时
变量表赋值:


图 9 脉冲数出赋值变量表

根据输入/输出地址定义,将相应的值写到相应的地址中,在本例中数值为:
脉冲时间 = 2000 * 1ms= 2s
接通延时 = 10 * 0.1 * 1000ms = 1s
这时,当激活软件使能 DBX52.0 时,观察 DB2.DBX0.1 会经过 1s 的延时后输出一个 2s 宽的脉冲。

7.2.脉宽调制(PWM)模式:
在脉宽调制模式下,该模块可以输出一个脉冲序列,用户可以通过修改输出值来修改脉冲序列的脉冲宽度,可以通过系数修改脉冲的周期。时序见图 10


图 10 脉宽调制(PWM)模式时序图

脉宽调制(PWM)的参数配置


图 11 脉宽调制(PWM)模式参数配置

1. 选择运行模式为脉宽调制(PWM);
2. 输出 PWM (脉宽调制)的输出模式:本例中使用千分数;
3. 时基为 1ms;
4. DI 为普通输入,不作为硬件使能;
5. 启动延时为 1000ms;
6. 最小脉冲宽度 10ms (调节脉冲宽度时,最小不能小于此值);
7. 脉冲周期时间为 1000ms;
脉宽调制(PWM)模式可以在程序里面给定给两个主要的数值:脉冲宽度和脉冲周期,其中:
脉冲周期 = 周期系数 * 0.1 * 参数预设的脉冲周期
脉冲宽度 = (给定数值 / 1000) * 脉冲周期
通过变量表赋值:


图 12 脉宽调制(PWM)模式赋值变量表

根据输入/输出地址定义,将相应的值写到相应的地址中,在本例中数值为:
脉冲周期 =10 * 0.1 * 1000ms = 1s
脉冲宽度 = (500 / 1000) * 1s = 0.5s
这时,当激活软件使能 DBX52.0 时,观察 DB2.DBX 0.1 将经过 1s 的延时后输出一个占空比为 1:1 的 1Hz 频率脉冲。要改变脉冲宽度,直接修改 DB2.DBW 50 的给定值即可。

7.3.脉冲串输出模式:
在脉冲串输出模式中,该模块可以输出一个固定脉冲个数的脉冲串,用户可以定义脉冲个数和修改脉冲周期时间。时序见图:


图 13 脉冲串输出模式时序图

脉冲串输出的参数配置:


图 14 脉冲串输出模式参数配置

将参数中的运行模式更改为 pulse train,脉冲宽度赋值为 100ms,其他参数与前面模式类似。
脉冲串输出模式可以在程序里面给定给两个主要的数值:脉冲个数和脉冲周期,其中:
脉冲个数 = 给定数值
脉冲周期 = 周期系数 * 0.1 * 参数预设的脉冲周期
通过变量表赋值:


图 15 脉冲串输出模式赋值变量表

根据输入/输出地址定义,将相应的值写到相应的地址中,在本例中数值为:
脉冲周期 = 2 * 0.1 * 1000ms = 200ms
脉冲个数 = 50
这时,当激活软件使能 DBX52.0 时,观察 DB2.DBX 0.1 会经过 1s 的延时后输出 50 个周期为 200ms 的脉冲串。将该脉冲串接到计数功能模板的输入做计数,可以由图16 看到计数的结果为 50 个。要改变脉冲周期,直接修改 DB2.DBW 53 的系数值即可。


图 16 脉冲串输出模式计数测试结果

7.4.On/Off-Delay 模式
在 On/Off-Delay 输出模式下,该模块输出可以根据数字量输入的状态做延时接通和延时关断。时序见图:


图 17 On/Off-Delay 模式时序图

On/Off-Delay 的参数配置:


图 18 On/Off-Delay 模式参数配置

将参数中的运行模式更改为 on-/off-delay,并设定接通延时为 1000ms,其他参数与前面模式类似。
On/Off-Delay 模式可以在程序里面给定给两个主要的数值:关断延时时间和接通延时时间,其中:
关断延时 = 给定数值 * 参数预设的时基
接通延时 = 接通延时系数 * 0.1 * 参数预设的接通延时
通过变量表赋值:


图 19 On/Off-Delay 模式赋值变量表

 西门子  6ES7195-7HA00-0XA0  西门子  6ES7195-7HA00-0XA0  西门子  6ES7195-7HA00-0XA0

阅读:63
来源:长沙玥励自动化设备有限公司
联系人:姚善雷
联系方式:13874941405