用途:在高温环境的轴承来说,氮化硅材料是非常适合的。例如:喷气发动机、燃气轮机、核反
应堆系统、X 光管钨盘,以及火箭、宇宙飞船中。
Ø 膨胀系数小→ 可用于环境温度变化领域
氮化硅的线膨胀系数大约是轴承钢的 1/4,随温度变化的尺寸变化量小,能适用于温度变化
的领域。此外可有效的防止轴承材料因温度变化导致尺寸变化而发生“抱死”等现象。从而保证
设备的稳定运行,减少因设备故障发生的损失。
Ø 优异的自润滑性能
氮化硅陶瓷材料本身具有减摩、抗磨、润滑功能,在不良的润滑工况条件下,如贫油润滑、
无油干摩擦情况下,显示出优越的减摩自润滑性能,具有良好的应急状态,可以有效避免设备
突发故障造成的损失。也可用于真空环境中,防止润滑油污染环境。
Ø 化学性质稳定- 耐腐蚀
氮化硅制备的轴承材料可长时间于腐蚀性的酸、碱、盐等溶液中,相比于钢制轴承而言,
其平均寿命将比不锈钢轴承高 4~25 倍。可应用于化工机械设备、食品、海洋、污水处理等部
门使用的机器,降低腐蚀带来的困扰。
Ø 无磁性、绝缘性
在强磁环境中,运用钢制轴承时,从轴承自身磨损下来的微粉被吸附在翻滚体和滚道面之
间,成为轴承提早脱落损坏、噪声增大的首要原因,因为陶瓷轴承是非磁性,且具有正常
的承载才能,所以可用于需求非磁性轴承的场合。
一般说来由于工业生产中工质的温度常不能保持恒定,故多采用频差法及时差法。只有在管径很大时才采用直接时差法。对换能器安装方法的选择原则一般是:当流体沿管轴平行流动时,选用Z法;当流动方向与管铀不平行或管路安装地点使换能器安装间隔受到限制时,采用V法或X法。当流场分布不均匀而表前直管段又较短时,也可采用多声道(双声道或四声道)来克服流速扰动带来的流量测量误差。多普勒法适于测量两相流,可避免常规仪表由悬浮粒或气泡造成的堵塞、磨损、附着而不能运行的弊病,因而得以迅速发展。
采用物品或模拟物品进行重复试验,提供各参数范围,确认效果符合规定。汇总并完善各种文件和记录,撰写记录完整的验证报告。日常生产中,应对过程程序的运行情况进行监控,确认过程中各关键参数(如温度、压力、时间、湿度、气体浓度及吸收的辐照吸收剂量等)均在验证确定的范围内。;已采用的程序中关键的设备和工艺应定期进行再验证。当程序发生较大变化发生变更时,(包括柜中物品放置装载方式和数量发生的改变)时,应进行重新再验证。
因为振动盘是强阻型振动而不是共振,所以有稳定的振幅。振动频率范围大。电磁式激振器的振动频率是固定的,一般等于电源步率,而振动盘的振动频率可通过调整转速的办法进行大范围的调整,并且能按照不同的通途任意选择振动频率和振幅。受电源波动的影响小,电磁式激振器会由于电压变化而引起激振力发生大的变化,但振动盘中,这种变化就非常小。多机组合,可实现自同步能完成不同工艺要求。可根据振动盘的安装方式改变激振力的方向。